Parcours

Fermer Parcours lévinassien

Fermer Parcours axiologique

Fermer Parcours cartésien

Fermer Parcours hellénique

Fermer Parcours ricordien

Fermer Parcours spinoziste

Fermer Parcours habermassien

Fermer Parcours deleuzien

Fermer Parcours bergsonien

Fermer Parcours augustinien

Fermer Parcours braguien

Fermer Parcours boutangien

Fermer Glossématique

Fermer Synthèses

Fermer Ouvrages publiés

Fermer Suivi des progrès aux USA

Fermer Parcours psychophysique

Fermer L'art et la science

Fermer Parcours nietzschéen

Fermer Philosophies médiévales

Autres perspectives

Fermer Archéologie

Fermer Economie

Fermer Sciences politiques

Fermer Sociologie

Fermer Poésie

Fermer Théologie 1

Fermer Théologie 2

Fermer Théologie 3

Fermer Psychanalyse générale

Fermer Points d’histoire revisités

Fermer Edification morale par les fables

Fermer Histoire

Fermer Phénoménologie

Fermer Philosophie et science

Mises à jour du site
Liens Wikipédia
Visites

   visiteurs

   visiteurs en ligne

Synthèses - L'intrication quantique (Théorie)




INTRICATION QUANTIQUE (Théorie)
 
Telle que décrite par Futura-Sciences, l'intrication quantique est un phénomène fondamental de la mécanique quantique mis en évidence par Einstein et Schrödinger dans les années 30. Deux systèmes physiques, comme deux particules, se retrouvent alors dans un état quantique dans lequel ils ne forment plus qu'un seul système dans un certain sens subtil.
Toute mesure sur l'un des systèmes affecte l'autre, et ce, quelle que soit la distance les séparant. Avant l'intrication, deux systèmes physiques sans interactions sont dans des états quantiques indépendants mais après l'intrication ces deux états sont en quelque sorte « emmêlés » et il n'est plus possible de décrire ces deux systèmes de façon indépendante.
C'est pourquoi des propriétés de non-localité font leur apparition et la mesure sur l'un des systèmes influence instantanément l'autre système, même à des années-lumière. Le phénomène d'intrication est l'un des phénomènes les plus troublants en mécanique quantique servant de base à l'interprétation de Copenhague de celle-ci.
 
L'intrication quantique est au cœur des fameuses expériences dites du paradoxe EPR et du chat de Schrôdinger, ou encore de l'ami de Wigner.
Le phénomène d'intrication repose sur les principes mathématiques et physiques de la mécanique quantique. C'est-à-dire, les notions de vecteurs d'états et de produits tensoriels de ces vecteurs d'états d'un côté et les principes de superposition des états et de réduction du vecteur d'état de l'autre.    .
Rappelons qu'en mécanique quantique, l'extension de la mécanique matricielle de Heisenberg et de la mécanique ondulatoire de Schrôdinger, il y a une refonte complète de la cinématique et de la dynamique des grandeur physiques et mathématiques associées aux phénomènes observables et aux systèmes physiques.
 
La mécanique quantique, même si elle traite d'une dualité onde-particule, n'est pas une théorie se réduisant à la mécanique ondulatoire des particules.
Le caractère dual de la matière et de la lumière mis en évidence dans le cas de la théorie des particules chargées et du rayonnement électromagnétique n'est qu'une conséquence d'une refonte des lois différentielles et intégrales associées à un phénomène physique et à un système physique.
L'introduction du concept de fonction d'onde pour une particule n'est alors qu'un cas très particulier de l'introduction du concept de vecteur d'état pour un système physique possédant des variables dynamiques donnant lieu à un phénomène mesurable, quel que soit ce système et ces variables, tant qu'une notion d'énergie et d'interaction entre ce système et un instrument de mesure classique existent.
C'est parce que les lois différentielles et intégrales, décrivant l'évolution dans l'espace et le temps d'une grandeur observable en physique classique, ont naturellement la forme des lois cinématiques d'un ensemble discret ou continu de points matériels que l'on retrouve des correspondances entre la formulation quantique générale de ces lois et celles, quantiques, des électrons et des photons.
 
Il est important de bien se rappeler que, déjà en physique classique, nous mesurons et définissons un phénomène à partir de la modification de l'état cinématique et dynamique d'une particule de matière test
Un champ électromagnétique est défini par son effet sur une particule de matière chargée test en un point de l'espace, et donc en particulier, un champ d'ondes lumineuses.
La température peut être définie par la dilatation d'un corps matériel en un point, donc, là aussi, une grandeur observable est en dernière analyse définie par la cinématique d'un point matériel et le bilan des échanges d'énergie et d'impulsion.
 
La solution du problème de la dualité onde-corpuscule repose donc sur deux idées centrales dans le cadre de l'interprétation de Copenhague et la mécanique quantique sous la forme donnée par Dirac, Von Neumann et Weyl à partir des travaux de Bohr, Heisenberg et Born :
        il n'y a fondamentalement ni onde ni corpuscule au sens classique dans la nature. Ces concepts ne sont utiles, et n'interviennent encore dans la théorie que parce qu'ils doivent nécessairement établir une correspondance entre la forme des lois quantiques et celles des lois classiques qui doivent émerger des premières.
De même qu'une particule test sert à définir un champ électromagnétique, un instrument de mesure classique sert à définir un système quantique par la façon dont ce système quantique va affecter l'appareil de mesure. Inévitablement, la description cinématique et dynamique de cet appareil va faire intervenir des concepts d'onde et de particule classiques.
 
Le formalisme quantique doit donc tout à la fois exprimer tout cela et l'inexistence fondamentale de particule et d'onde classique, tout comme la relativité repose sur l'inexistence d'un espace et d'un temps absolus. Cette propriété du formalisme est satisfaite en grande partie par les inégalités de Heisenberg :
        la dualité onde-corpuscule ne dérive pas d'une association subtile des particules et des ondes, c'est-à-dire qu'il ne s'agit pas de lois particulières restreintes aux lois de mouvement et à la structure des particules de matières et aux ondes des champs d'interactions (électromagnétique, nucléaire etc..) mais bien que les lois d'évolution dans le temps et l'espace, d'une grandeur physique quelconque, sont modifiées, notamment la forme générale d'une loi différentielle et d'une loi intégrale.
C'est parce que ce cadre est quantifié qu'il s'applique obligatoirement à n'importe quel système physique en droit. Il est essentiel à ce sujet de se rappeler que l'existence d'une énergie est une propriété essentielle dans toutes les lois de la physique. L'universalité de l'énergie, et le fait que toute définition d'une mesure d'un phénomène repose en dernière analyse sur une interaction avec de l'énergie, assure automatiquement que les lois de la mécanique quantique s'appliquent pour décrire l'évolution d'un système arbitraire.
 
C'est pourquoi la mécanique ondulatoire, – qui repose finalement en grande partie sur l'existence remarquée par De Broglie d'une analogie forte entre le principe de Maupertuis pour le mouvement d'une particule de matière et le principe de Fermât pour un rayon lumineux –n'est qu'un cas très particulier de la mécanique quantique, puisque celle-ci ne porte finalement pas sur des lois de mouvement dans l'espace et le temps des particules mais sur l'évolution de toutes les grandeurs physiques mesurables directement ou indirectement.
En particulier, les lois de la mécanique quantique contiennent naturellement la possibilité de la création et de 1a destruction d'une particule et sa transformation en une autre, ce qui n'est pas un phénomène que l'on peut décrire à partir des principes de Fermât ou Maupertuis.
La construction, et la forme de la théorie quantique, reposent donc sur les idées que:
        les lois de la physique ne portent fondamentalement pas sur quelque chose dans l'espace et dans le temps.
        les particules et les ondes ne sont pas des structures fondamentales mais des approximations de la forme des lois et des objets du monde physique.
         l'énergie est au cœur du processus de quantification et assure/explique le caractère universel de la quantification (quantification de certaines variables dynamiques classiques, amplitudes de probabilités pour l'observation de ces valeurs).
 
Toutefois, les lois de la mécanique quantique ont émergé historiquement, et peuvent être introduites pédagogiquement en première approximation, avec les mécaniques ondulatoire et matricielle des particules dans l'espace et le temps classiques. Mais il est central de bien comprendre au plus vite que ces mécaniques ne sont pas la véritable structure de la mécanique quantique.
La façon de procéder rappelle donc la thermodynamique, qui fonctionne indépendamment de la structure atomique ou non du système physique. L'énergie totale du système est considérée, on l'appelle une fonction d'état du système et il existe un jeu de variables fondamentales que l'on appelle variables d'états liées par la fonction d'énergie et d'autres fonctions d'états du système thermodynamique. Le système est défini comme une boîte noire dont l'intérieur importe peu, seuls comptent les bilans d'énergie entrant et sortant et les valeurs des variables d'états mesurées.
La mécanique quantique fait bien, malgré tout, une synthèse de structure ondulatoire et corpusculaire pour l'évolution des grandeurs physiques. Ce qui veut dire qu'en particulier, la physique et la mathématique des ondes et des champs doivent se retrouver dans la forme de ces lois de sortes que, lorsqu'elles sont appliquées à des systèmes particuliers comme des électron, des protons et le champ électromagnétiques classiques, on retrouve la mécanique ondulatoire de ces systèmes.
Ainsi le principe de superposition des champs en électrodynamique et en optique doit se retrouver pour décrire l'état d'un système quantique. Toute la structure de l'analyse de Fourieren particulier doit être présente.
De même, la structure de la mécanique analytique avec la fonction de Hamilton[1] de l'énergie d'un système mécanique classique doit se trouver conservée et jouer un rôle central,
 
 



[1] À un système physique on associe des variables observables Ai et une énergie totale H appelée l'Hamiltonien.
 



Date de création : 25/08/2013 @ 11:09
Dernière modification : 25/08/2013 @ 11:14
Catégorie : Synthèses
Page lue 2701 fois


Imprimer l'article Imprimer l'article


Réactions à cet article

Personne n'a encore laissé de commentaire.
Soyez donc le premier !


^ Haut ^